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1. Summary

This is a second phase research following the first phase which was from May 1, 1991 to

May 30, 1992. The objective is to investigate the optimal ascent trajectory for the National

AeroSpace Plane (NASP) from runway take-off to orbital insertion and address the unique

problems associated with the hypersonic flight trajectory optimization. The trajectory op-

timization problem for an aerospace plane is a highly challenging problem because of the

complexity involved. Previous work has been successful in obtaining suboptimal trajectories

by using energy-state approximation and time-scale decomposition techniques [1-3]. But it

is known that the energy-state approximation is not valid in certain portions of the trajec-

tory. This research aims at employing full dynamics of the aerospace plane and emphasizing

direct trajectory optimization methods.

The major accomplishments of this research include the first-time development of an

inverse dynamics approach in trajectory optimization which enables us to generate optimal

trajectories for the aerospace plane efficiently and reliably, and general analytical solutions

to constrained hypersonic trajectories that has wide application in trajectory optimization

as well as in guidance and flight dynamics. Optimal trajectories in abort landing and ascent

augmented with rocket propulsion and thrust vectoring control were also investigated. Mo-

tivated by this study, a new global trajectory optimization tool using continuous simulated

annealing and a nonlinear predictive feedback guidance law have been under investigation

and some promising results have been obtained, which may well lead more significant devel-

opment and application in the near future.

There have been a total of seven publications that were either supported or partially

supported by this grant [4-10], and one has been submitted recently [11]. As a direct result

of the support under this grant, a graduate student, John Samsundar, has received his Master

Degree in Aerospace Engineering in 1993 [7]. Because these publications contain detailed

descriptions of a large portion of the work, this report will only give brief summaries to

those results that have been reported in the open literature. More detailed discussions are



provided for other findings that arenot in the abovecited publications.

2. Vehicle Model

The aerospace plane model used throughout this study is based on a winged-cone config-

uration developed at NASA Langley Research Center [12]. The aerodynamic coefficients are

given in tabulated form as functions of angle of attack ranging from -1 ° to 12 °, control sur-

face deflections and Mach number ranging from 0.3 to 24.2. The thrust of the airbreathing

propulsion system is proportional to dynamic pressure

T = CTq

where the thrust coefficient CT, as well as the specific impulse I,p, depends on fuel equivalence

ratio, dynamic pressure and Mach number, determined from table lookup. The vehicle has a

weight of 300,000 lb and an overall fuselage length of 200 ft. This model has also been used

in several other studies [13]. It is felt that the use of this model in the trajectory optimization

problem has preserved essential characteristics of hypersonic vehicles which may otherwise

not be prominent in other over-simplified models.

The three-dimensional point-mass motion of the aerospace plane over a spherical, non-

rotating earth is described by

r' -- rtanTc°s¢ (1)
COS ¢

¢' = tanTcos¢ (2)

, (Tcos(a-_)-D _sin'y3 rcos¢ (3)
v = M r 2 /vcosTcos¢

m

' ;)3' "" ((Tsin(c_ c) + L)cosa /_ v rcos¢ (4)
my 2 cos _/ cos 7 cos ¢

¢, = ((T sin(a - e)+my cos "yL)sina-vc°s*/c°sCtan¢)r v cosrC°s¢7cos ¢ (5)

, -T rcos¢ (6)
m =

goI,p v cos 7 cos ¢

where the prime ' indicates differentiation with respect to longitude 9. The use of 0 as the

independent variable is for convenience of the inverse dynamics approach described later.



3. Minimum-Fuel Ascent: Inverse Dynamics Approach

3.1 Two-Dimensional Ascent

In this problem, an optimal trajectory is sought for the aerospace plane from horizontal

take-off to insertion into a circular orbit at a given altitude with minimum fuel consumption.

In addition to the final orbit insertion conditions, two important flight path constraints are

also necessary [14]

q _< (7)

Q _< (s)

From an optimal control viewpoint this problem is very challenging due to several reasons:

hypersonic trajectories are extremely sensitive to to variations in aerodynamic and propulsive

forces, which renders the optimization problem to be poor-conditioned; the two functional

constraints (7) and (8) only add significantly more difficulty to the already complex prob-

lems; the nonanalytical modeling of the vehicle makes any techniques based on calculus of

variations inapplicable. To cope with these challenges, an inverse dynamics approach was

developed. The idea is to specify a history of altitude profile, then solve for the controls

required to fly this altitude history. By iteratively searching for the optimal ascent altitude

history, the optimal controls are finally found. This approach, its advantages and extensive

numerical results are given in [5], [8] and [14]. Reference [5] also discusses the use of the

inverse dynamics approach in guidance for the aerospace plane. This technique was first

tried on 2-D optimal ascent in which the controls are c_ and fl, angle of attack and fuel

equivalence ratio, respectively (c is assumed to be zero). Figure 1 shows a typical optimal

trajectory.

3.2 Three-Dimensional Ascent

The actual flight of the aerospace plane will not likely be restricted to 2-D flight, since

some out-of-plane maneuvers may be required for given conditions at take-off and orbital
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insertion. It would be of great interest to understand how the out-of-plane maneuvers will

influence the fuel consumption along the minimum-fuel trajectory, and whether or not the

conclusions from the study of 2-D flight will be valid for 3-D cases. While there is no more

theoretical difficulty in 3-D flight than in 2-D case, the numerical difficulty is increased

considerably because not only the number of state variables and controls in 3-D flight is

increased, but also the inequality constraints (7) and (8) on the trajectory are more difficult

to satisfy. With the confidence gained in the 2-D study with the inverse dynamics approach,

it appears logical to continue to use this technique in 3-D problem. Now consider the

equations of motion Eqs. (1)-(6). Let C(0) be a specified profile of the radius

,-(0)= c(o) (9)

Differentiating Eq. (9) twice gives

= cos 2 7[_(c - c'tan 7)
7' cos ¢ . ,,

¢' cos ¢ sin ¢)1

Using Eqs. (4) and (10) results in

L = __mY [7'vc°sTc°s¢
C080" r COS

C I

¢ (¢' cos Csin ¢ -rcos 2

(10)

T sin c_cos _r]+(2e_ V)cosT- (11)
vr 2 r my

For given values of all the state variables, f_ and a, Eq. (11) implicitly defines the required c_

to follow Eq. (9), which can be solved for numerically with a Newton algorithm. Since this

approach puts more direct control on the trajectory shaping by specifying r, the optimization

process is more stable and much less sensitive to control variations. The histories of It, a

and c are parametrized as functions of 0. The corresponding trajectory is obtained by

numerically integrating the equations of motion. This way, the problem becomes a parameter

optimization problem and a sequential quadratic programming (SQP) algorithm has been

used to solve it [15]. For instance, when the following initial and terminal conditions are

used

r(0) = Ro (radius of the earth)



¢(o)

¢(o)

re(o)

= 0

= 170 m/s (Mach 0.5)

= 0

= 0

= 133,809 k9 (295,000 Ibf)

(12)

r(tl)

¢(t:)

v(tj)

 (ts)

¢(ts)

= Ro + 55 krn

= 0 °, 5°, 10 °, and 15"

= 7839 m/s

= 0

-- free

(13)

and an operational constraint

q < 95,760 N/m 2 (2000 psf) (14)

is imposed, Figure 2 depicts the ascent trajectories. They almost coincide with each other.

Other features of the 3-D trajectories also closely resemble those observed in 2-D cases [4, 5,

8, 14]. The following table gives the time-of-flight and final mass for each of the trajectories.

It is clear from the table that there is practically no extra penalty on the fuel consumption

for 3-D trajectories as compared to the 2-D case (¢1 = 0*). The reason may become evident

when one inspects Figs. 3 and 4 which show the histories of bank angle a(t) and latitude

vs. longitude, respectively. It is seen that the vehicle only uses large bank angle in a short

initial period to steer it into an appropriate plane and then remains approximately in planar

motion thereafter. Figure 5 confirms this feature by showing the almost constant heading

angle histories of the aerospace plane, after a quick initial change that aligns the vehicle in

the right direction. Therefore for the most part, an optimal 3-D trajectory is in 2-D flight.
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Table 1: Time-of-flight and final massfor variousfinal latitudes

d.t(deg.) tj(sec.) rns(kg)

0 1311.2 67,112.0

5 1312.3 67,111.5

10 1312.5 67,111.1

15 1314.0 67,107.7

Thus it may be concluded that the study of 2-D flight for the aerospace plane appears to be

sufficiently representative of general motion in terms of fuel consumption and characteristics

of the trajectory.

3.3 Effects of Thrust Vectoring Control

The conceived configuration of the aerospace plane, which uses its forebody as part of the

compressor and aftbody as part of the nozzle, probably will make thrust vectoring control

(TVC) difficult to realize, and any TVC would be very limited if possible at all. However,

from a trajectory analysis point of view, it would be interesting to have an assessment as

how much more fuel could be saved should TVC is available. To this end, we allow a nonzero

thrust angle e to be used. The system equations are the same as Eqs. (1)-(6) with e # 0.

The study is restricted to 2-D flight. There are three control variables c_, e and f_. Again,

e and [2 are parameterized directly and a solved using the inverse dynamic approach. The

initial and terminal conditions are the 2-D versions of the conditions in Eqs. (12-13) with

constraint (14) enforced.

Figure 6 shows the cr and e histories. With TVC, the final mass of the aerospace plane

is 67,340 kg, comparing with 67,112 kg without TVC. The fuel saving by employing TVC is

very small. This is because 75% of the optimal trajectory lies on the boundary of constraint

(14). The fuel efficiency is already determined along that portion by the maximum allowable

dynamic pressure (2000 psf). TVC can only improve the fuel efficiency in the short initial

climbout and final zoom, which is rather limited. Consequently, the trajectory closely re-

sembles the trajectory without TVC. Therefore one can conclude that TVC does not appear



to offer significant improvement in fuel saving in the ascent flight of an aerospace plane.

4. Analytic Treatment of Constrained Trajectories

It has been observed in the study of the optimal ascent trajectory for the aerospace

plane that a dominant portion (60% - 85_) of the trajectory lies on the boundaries of the

constraints (7) and (8) (Fig. 1). Because of the active constraints, it was felt that some

analytic treatment to these trajectory segments may be possible, despite the nonanalytic

vehicle model and nonlinearities in dynamics. Analytic solutions of the constrained trajectory

as explicit functions of time, if available, would provide an emcient means to evaluate the

trajectory, and often lead to a better understanding of the trajectory. In turn, tasks such

as trajectory optimization, control and guidance can be significantly simplified. Reference

[10], which is a product of this research, discusses this problem in a more general context.

The analysis reveals that under some fairly general conditions the altitude dynamics and

flight path angle dynamics constitute a natural two-time-scale system: the flight path angle

dynamics is fast and the altitude dynamics slow. The asymptotic solution for the flight path

angle is given as a function of the altitude from which the velocity can be expressed as an

explicit function of time, regardless of the specific forms of the constraints. If the altitude

can be solved in terms of the velocity from the constraint (as in the case of Eqs. (7) and (8)),

both the altitude and the flight path angle have analytical expressions as functions of time.

Figures ? and 8 show the comparisons of the analytic and numerically generated altitude

and flight path angle histories along a typical ascent trajectory for the aerospace plane.

The accuracy is remarkable. With these closed-form solutions used for the major portion

of the optimal ascent trajectory, only the relatively short initial climbout and final zoom of

the trajectory need to be numerically investigated. This technique was applied in Ref. [6]

successfully, demonstrating that the challenging problem of ascent trajectory optimization

for the aerospace plane can be significantly simplified. The analytical solutions were also

used to design a hypersonic cruising trajectory for the aerospace plane [10]. The results



strongly support the theory and the analytical solutions are in excellent agreement with the

numerical results.

5. Abort Landing

As part of the investigation of the optimal trajectories for the aerospace plane, the ca-

pability of safe landing of the aerospace plane was studied. The starting point is chosen to

be a typical hypersonic cruise condition. Should any propulsion system failure develop at

this point, the maximum reachable distances in all directions need to be known in order to

explore all abort possibilities and determine an appropriate landing site. The knowledge of

this abort landing area is a particularly important information in the early stage of the test

flight of such a hypersonic vehicle. The trajectory optimization problem is also known as

the footprint problem [16]. The formulation of the problem is as follows:

maximize ¢(tS)

subject to the equations of motion Eqs. (1)-(5) with T = 0, initial conditions

r(O) = Ro+30.5km

¢(0) = 0

e(0) = 0

v(0) = 3351 m/s (Mach 11)

-_(o) = o

¢(0) = 0

and terminal conditions

,-(tj) = Ro

o(ts) = Os

v(tA = 17om/,

(15)

(16)

(17)



When 01 takes all possible values, the ground track of the point (Of, el) represents the

boundary of the maximum landing area (footprint). This is a 3-D trajectory optimization

problem. The controls are the aerodynamic forces influenced by a and a subject to ]a[ <

85*. The problem is solved by directly parameterizing a(t) and a(t) and using the SQP

algorithm. Figure 9 shows the footprint with the ground tracks of several trajectories. It is

seen that that maximum downrange is about 2641 km and the maximum crossrange 1677

km. The minimum downrange is about -540 km (behind the starting point). The aerospace

plane can glide to any landing site inside this footprint. Figure 10 illustrates some typical

altitude profiles on the footprint. The oscillations in the altitude histories are characteristic

of hypersonic optimal gliding trajectories [16]. The ct(t) history for a typical trajectory is

plotted in Fig. 11. We notice that the optimal a at each instant is approximately equal to

the value at which the lift-to-drag ratio CL/CD is maximized at that Mach number. This is

also consistent with what previous researchers have observed [16]. Bank angle histories for

several cases are shown in Fig. 12.

6. Simultaneous Design of Trajectory and Vehicle

Because of the stringent flight path constraints and highly demanding orbital insertion

conditions, fuel will be a significant part of the take-off weight of the aerospace plane. Due

to the unprecedented complexity of the aerospace plane, it has been well recognized that an

integrated design approach that encompasses areas of propulsion, aerodynamics, structure

and flight control is a necessity for the success of the vehicle. Such an integrated approach

could significantly reduce the structural weight of the vehicle and produce a far more superior

design. We believe that a simultaneous design of the optimal ascent trajectory and vehicle

design could also be quite beneficial in terms of further reducing the vehicle size and weight,

because it has been found that there is a strong coupling between the trajectory and vehicle



structural strength requirement (e.g., the minimax dynamic pressure solution presented in

Rcfs. [8,141).

As a very preliminary study, we considered the trajectory optimization problem in which

the control histories a(t) and f_(t) (2-D case, no TVC) as well as the vehicle reference area

S are to be optimized. S is chosen because it influences both aerodynamic lift, the main

flight path control force, and the drag which a major portion of the fuel is spent to overcome.

The initial and final conditions and constraint are the same as in Section 3.3. The optimal

solution yields a reference area of 82% of the value given in the original model [12]. The final

mass is 68,986 kg, comparing with 67,112 kg with the reference area fixed at the original

value. It should be stressed that this result is obtained by simplistically assuming that the

change of S will not influence the aerodynamic coefficients of the aerospace plane. This,

of course, is not realistic. Nonetheless, the result demonstrates the significant benefits that

could be achieved by combining trajectory design with the vehicle configuration design.

7. Conclusions and Future Research Topics

This report documents the major work accomplished during the period from June 1992

to October 1993. Details of some important development are not included, though, because

they are available in Refs. [5-11] in the forms of archived journal papers and conference

proceedings articles. Only summaries of those results are given. Other work that has not

appeared in the public literature is described in greater details.

With the success of the proposed inverse dynamics approach in 2-D trajectory optimiza-

tion, more complex 3-D optimal ascent was investigated. It was found that the 3-D optimal

trajectory resembles the 2-D counterpart closely. In 3-D flight, the aerospace plane would

initiate a tight turn after takeoff to move the trajectory into a vertical plane in which the

orbit insertion point is contained. For the most part of the ascent, the trajectory remains in

effect to be a 2-D trajectory. This finding indicates that the characteristics of 2-D optimal

trajectories are sufficiently representative of more general cases. The study also found that

10



thrust vectoring control, even if available for the aerospace plane, does little to further reduce

the fuel consumption in ascent. This is because the optimal ascent trajectory is tightly con-

strained for a dominant portion of the ascent during which the fuel consumption is mostly

influenced by the allowable level of dynamic pressure. TVC only contributes to control of

the relatively short initial and final segments of the trajectory.

Analytical study of constrained hypersonic trajectories was also conducted in conjunction

with the findings in trajectory optimization. The work provides a general treatment to a

class of constrained flight problem that include a dominant portion of the optimal ascent

of the aerospace plane. By cleverly selecting the variables, the constrained dynamics are

shown to be a two-time-scale system. Closed-form solutions to the constrained trajectory

are obtained. These solutions were used in trajectory optimization process to significantly

reduce the computation required for generating an optimal ascent trajectory.

The maximum landing area (footprint) problem accesses the safe landing capability of the

aerospace plane in case the mission has to be aborted. The footprint gives the boundary of an

area within which the aerospace plane can safely land by gliding from a typical hypersonic

cruise altitude. The knowledge of a series of footprints corresponding to different cruise

conditions would be valuable in determining the emergence landing site should any propulsion

system failure of the aerospace plane develop in flight. It has been demonstrated that the

trajectory optimization technique used in this research can be used to solve this problem

readily.

The future research topics that seem to be logical continuation of this research are as

follows

1. Simultaneous Design of Trajectory and Vehicle

Our preliminary study has indicated that much could be gained by incorporating the

vehicle design process with trajectory optimization. This multidisciplinary undertaking

involves aerodynamics, propulsion, structure and flight control. Because of the scope of

the challenge, initial efforts perhaps should be concentrated on proof of concept. Some

11



essentialingredients of each of the areas should be preserved, but simplifications are

necessary for the problem to be tractable. In any event, the various models involved

are most likely highly data-driven, and the size of the problem will be large. The

availability of a reliable, efficient optimization algorithm that is suited for nonsmooth

problem is almost imperative for any attempt to tackle this problem. Motivated by

these thoughts, a recently developed continuous simulated annealing algorithm was

examined, and applied for the first time to nonsmooth trajectory optimization in Ref.

[9]. The algorithm demonstrated a clear superiority over some other well-known con-

ventional algorithms in the areas such reliable convergence, efficiency and ability to

find global optimum. We believe that this algorithm is a truly promising tool in any

effort to study simultaneous design of ascent trajectory and vehicle.

2. Predictive Guidance Laws

From this study and previous studies, it has been observed that the optimal ascent

trajectory is tightly constrained by operational and safety constraints. Thus flying

along the designed path not only reduces fuel consumption, also guarantees satisfaction

of mission requirements and ensures safety of the vehicle. When deviations from the

nominal trajectory occur, as will inevitably in actuality, it is the job of the guidance

system to provide correctional commands in real time to restore the flight path. A

systematic framework for developing nonlinear feedback guidance laws is proposed in

Ref. [11] which was supported in part by this grant. The approach is applicable

to general nonlinear dynamics, requires no other stringent conditions on the system

except the usual smoothness conditions. It is based on continuous minimization of

the difference between the predicted and the nominal trajectories. The computation

requirement for a typical aerospace guidance problem is well within the capability of

the current onboard computers. Preliminary applications have shown its potential. A

thorough evaluation of the scheme on the aerospace plane guidance problem would

help identify a promising guidance law for hypersonic flight.
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